Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.28.22277015

ABSTRACT

Background SARS-CoV-2 is a rapidly spreading disease affecting human life and the economy on a global scale. The disease has caused so far more then 5.5 million deaths. The omicron outbreak that emerged in Botswana in the south of Africa spread around the globe at further increased rates, and caused unprecedented SARS-CoV-2 infection incidences in several countries. At the start of December 2021 the first omicron cases were reported in France. Methods In this paper we investigate the contagiousness of this novel variant relatively to the delta variant that was also in circulation in France at that time. Using a dynamic multi-variant model accounting for cross-immunity through a status-based approach, we analyze screening data reported by Santé Publique France over 13 metropolitan French regions between 1st of December 2021 and the 30th of January 2022. During the investigated period, the delta variant was replaced by omicron in all metropolitan regions in approximately three weeks. The analysis conducted retrospectively allows us to consider the whole replacement time window and compare regions with different times of omicron introduction and baseline levels of variants’ transmission potential. As large uncertainties regarding cross-immunity among variants persist, uncertainty analyses were carried out to assess its impact on our estimations. Results Assuming that 80% of the population was immunized against delta, a cross delta/omicron cross-immunity of 25% and omicron generation time was 3.5 days, the relative strength of omicron to delta, expressed as the ratio of their respective reproduction rates, , was found to range between 1.51 and 1.86 across regions. Uncertainty analysis on epidemiological parameters led ranging over 1.57-2.13 when averaged over the metropolitan French regions, weighting by population size. Conclusions Upon introduction, omicron spread rapidly through the French territory and showed a high fitness relative to delta. We documented considerable geographical heterogeneities on the spreading dynamics. The historical reconstruction of variant emergence dynamics provide valuable ground knowledge to face future variant emergence events.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.21.473702

ABSTRACT

The Covid-19 pandemic has caused at more than 3 million deaths by Mai this year [1]. It had a significant impact on the daily life and the global economy [2]. The virus has since its first recorded outbreak in China [3] mutated into new strains [4]. The Nextstrain [5] project has so far been monitoring the evolution of the virus. At the same time we were developing in our lab the MNHN-Tree-Tools [6] toolkit, primarily for the investigation of DNA repeat sequences. We have further extended MNHN-Tree-Tools [6] to guide phylogenetics. As such the toolkit has evolved into a high performance code, allowing for a fast investigation of millions of sequences. Given the context of the pandemic it became evident that we will use our versatile tool to investigate the evolution of SARS-CoV-2 sequences. Our efforts have cumulated in this tutorial that we share with the scientific community.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL